I am thrilled to present the half-day version of the Carrick Insitute's Concussion Bootcamp for Chiropractors to the Ohio State Chiropractic Association (OSCA) at its Annual Convention in October.
Summary:  Concussions are complex injuries requiring extensive training and specialty consultation. They are occurring in the general population at staggering incidence rates - more than diabetes and more cancer diagnoses. Chiropractors have a unique position in the healthcare system, with established patient relationships and more frequent interactions, allowing them to be pivotal stewards of brain health and safety. However, research has demonstrated that knowledge among ALL healthcare providers is deficient in identifying and managing mTBI. While many individuals don’t know if they were concussed or the magnitude that their injury may have on their life, this 4-hour, fast-paced course will aid its attendees in making solid recommendations by covering the breadth of concussion, from acute/sideline management, sub-acute therapeutics, and the 7 subtypes of concussion. We aim to enable chiropractors to properly manage or refer patients with concussions, reduce long-term suffering, and promote brain health.
Hour 1:
Defining concussion, epidemiology, predicting concussion, and prognosis
The pathophysiology of concussion
7 subtypes of concussion
Time-Of-Impact/Sideline Protocols
Hour 2:
Managing Concussion Sequela: the first 48 hours
Special Population Curve-Balls
Hour 3:
Overview of a 7-domain concussion evaluation to determine concussion subtype(s)
Hour 4:
Managing Concussion Sequela: 48 hours to 10 days
Making an appropriate referral
Return-to-Life Protocols
I am thrilled to present the half-day version of the Carrick Insitute's Concussion Bootcamp for Chiropractors to the Arizona Association of Chiropractors at its Annual June Convention.

Summary:

Concussions are complex injuries requiring extensive training and specialty consultation. They are occurring in the general population at staggering incidence rates - more than diabetes and more cancer diagnoses. Chiropractors have a unique position in the healthcare system, with established patient relationships and more frequent interactions, allowing them to be pivotal stewards of brain health and safety. However, research has demonstrated that knowledge among ALL healthcare providers is deficient in identifying and managing mTBI. While many individuals don’t know if they were concussed or the magnitude that their injury may have on their life, this 4-hour, fast-paced course will aid its attendees in making solid recommendations by covering the breadth of concussion, from acute/sideline management, sub-acute therapeutics, and the 7 subtypes of concussion. We aim to enable chiropractors to properly manage or refer patients with concussions, reduce long-term suffering, and promote brain health.

Hour 1:

Defining concussion, epidemiology, predicting concussion, and prognosis
The pathophysiology of concussion
The subtypes of concussion
Time-Of-Impact/Sideline Protocols

Hour 2:

Managing Concussion Sequela: the first 48 hours
Special Population Curve-Balls

Hour 3:

Overview of a multi-domain concussion evaluation to determine concussion subtype(s)

Hour 4:

Managing Concussion Sequela: 48 hours to 10 days
Making an appropriate referral
Return-to-Life Protocols

This Functional Neurology Management of Concussion (FN-MOC) NeuroSkills Lab is focused on Creating and Performing an Evidence-Based Baseline/Concussion Examination (On-site Training – 3 days)

  • This is a 3-day, hands-on, skill-development course. You will be the doctor and the patient. You will leave with certifiable proficiency in performing the examination procedures detailed in Chapter 3 of Carrick Institute's FN-MOC Level 1, and the results of your brain health baseline assessment. Please wear loose-fitting clothing and bring the tools introduced in Chapter 3
  • This course consists of over 50 EPAs or Entrustable Professional Activities that will be taught and perfected throughout the weekend. Scholars must attend, be assessed for proficiency, and pass to achieve FN-MOC certification status.

This Functional Neurology Management of Concussion (FN-MOC) course is focused on Creating and Performing an Evidence-Based Baseline/Concussion Examination (On-site Training – 3 days)

  • This is a 3-day, hands-on, skill-development course. You will be the doctor and the patient. You will leave with certifiable proficiency in performing the examination procedures detailed in Chapter 3 of Carrick Institute's FN-MOC Level 1, and the results of your brain health baseline assessment. Please wear loose-fitting clothing and bring the tools introduced in Chapter 3
  • This course consists of over 50 EPAs or Entrustable Professional Activities that will be taught and perfected throughout the weekend. Scholars must attend, be assessed for proficiency, and pass to achieve FN-MOC certification status.

A concussion is a mild traumatic brain injury (TBI) that can cause a range of challenges, including physical, emotional, autonomic, vestibular, oculomotor, sleep, and cognitive problems, along with a myriad of other symptoms. Despite the common perception that sports cause most concussions, only about 1 in 7 are sports-related. Instead, other injuries, such as falls, motor vehicle accidents, and assaults, are more likely to cause concussions. Although most people recover within a few weeks, some may experience persistent symptoms lasting for months or even years. See: "Does Everyone Recover From a Concussion?"

Recent research has shown that molecular hydrogen (H2) has potential therapeutic effects on various neurological conditions, including traumatic brain injury. H2 is a colorless, odorless, and tasteless gas studied for its antioxidant, anti-inflammatory, and anti-apoptotic properties. This article will explore how molecular hydrogen can benefit concussions and promote recovery.

What is Molecular Hydrogen?

Molecular hydrogen is the smallest molecule in the universe and has potent antioxidant, anti-inflammatory, and neuroprotective properties. These properties make it an attractive candidate for treating various conditions, including diabetes, heart disease, and neurological disorders. In recent years, there has been growing interest in the potential of molecular hydrogen to benefit concussion patients.

Molecular hydrogen has been studied for its potential therapeutic effects on various health conditions for decades. However, its use as a medical therapy is relatively recent, with the first clinical trials conducted in the early 2000s. One of the earliest reports of the medical use of molecular hydrogen was in 1975, when it was first used to treat decompression sickness in deep-sea divers. This condition, also known as the bends, occurs when nitrogen gas bubbles form in the blood vessels and tissues due to rapid decompression, sometimes causing severe pain, possible death, and other symptoms. Hydrogen was used as a therapeutic gas to reduce the severity of the symptoms and improve outcomes in affected divers. Since that time, research on the medical applications of molecular hydrogen has expanded to include a wide range of health conditions, including but not limited to neurological disorders, cardiovascular diseases, metabolic disorders, and cancer.

Hydrogen has antioxidant and anti-inflammatory effects that dampen oxidative stress and inflammation, accompanying nearly every disease affecting all humans. Another "out of this world" issue caused by oxidative stress is neurological deficits and long-term health issues caused by space travel. New research suggests that a little as one hour of space radiation causes damaging levels of oxidative stress, which compromises thinking and decision-making and is one of the greatest challenges for space travel.

For clinicians:

Excessive amounts of reactive oxygen species (ROS) can damage the composition of mitochondrial electron transport chains, disrupt intracellular redox systems, and lead to lipid peroxidation, protein misfolding, and DNA strand breakage. This can trigger oxidative stress, activate the JNK signaling system, up-regulate pro-oxidant genes, and inhibit antioxidants associated with nuclear factor-e2 related factor (Nrf2). As a result, matrix metalloproteinases (MMP) can be induced, along with the secretion of inflammatory chemokines such as tumor necrosis factors (TNFs), interleukin (IL)−1, IL-6, and IL-8, leading to inflammation. Additionally, peroxidation and inflammation can promote cell apoptosis. This can subsequently result in the release of pro-fibrotic cytokines like platelet-derived growth factors (PDGFs), insulin-like growth factors (IGFs), and basic fibroblast growth factors (FGFs), which can promote the differentiation of monocytes into M2 macrophages, enhance fibroblast proliferation and differentiation into myofibroblasts, and amplify inflammation.

Antioxidant Effects:

One of the primary mechanisms by which molecular hydrogen can benefit a concussion is its ability to reduce oxidative stress. Molecular hydrogen helps mitigate this damage by neutralizing free radicals and, in effect, reducing inflammatory processes in the body along with other tissue stressors.

Oxidative stress occurs when there is an imbalance between the production of free radicals and the body's ability to neutralize them with antioxidants. Overwhelming a person's ability to clear or reduce these harmful interactions in the body can lead to cellular damage and inflammation, worsening the effects of a concussion.

As detailed in "A Simple Guide to a Not-So-Simple Concussion", oxidative stress is a common feature of concussion; it can cause damage to neurons and other brain cells. Several studies have demonstrated the antioxidant effects of molecular hydrogen in animal models of traumatic brain injury. For example, a study published in the journal Brain Research showed that rats exposed to a concussive impact had significantly lower levels of oxidative stress markers in their brains when treated with molecular hydrogen gas.

At the same time, H2 has been shown to activate the Nrf2 pathway, a cellular signaling pathway that regulates antioxidant and anti-inflammatory responses, which can scavenge free radicals and reduce oxidative stress in the brain. By reducing oxidative stress and inflammation, H2 can protect brain cells from further damage and promote recovery after a concussion.

Molecular hydrogen can neutralize free radicals, molecules that can cause oxidative damage, thus reducing oxidative stress. It also leads to upregulating antioxidant enzymes, such as superoxide dismutase (SOD) and catalase. Properly using molecular hydrogen can help protect brain cells and promote healing more than the consumption of any known "superfood".

Anti-Inflammatory Effects:

Another pathway in which molecular hydrogen can benefit concussion patients is through its anti-inflammatory properties. In the case of concussions, the inflammatory response can exacerbate the damage to the brain and prolong the recovery process. Studies have shown that H2 can reduce inflammation in the brain by inhibiting the production of pro-inflammatory cytokines and chemokines. These signaling molecules recruit immune cells to the injury site and promote inflammation. H2 has been shown to reduce the levels of these molecules in animal models of traumatic brain injury, leading to a reduction in inflammation and improved neurological function. By reducing inflammation, molecular hydrogen can help to minimize the damage caused by a concussion.

Inflammation is a natural response of the immune system to injury or infection. Excessive or prolonged inflammation can lead to tissue damage and cell death.

The hydrogen molecule, despite being a weak reducing agent and having a low molecular weight, has the ability to diffuse quickly and pass through cell membranes and lipid bilayers. It can then target the cell nuclei and mitochondria, where there is an abundance of reactive oxygen species (ROS), and selectively neutralize highly reactive toxic ROS, such as -OH. Recent studies have also shown that hydrogen has a positive effect on the Nrf2 pathway, which is a crucial regulator of electrophilic/antioxidant homeostasis and helps maintain the functional integrity of cells during oxidative stress conditions. Hydrogen activates the Nrf2-Keap1 system, triggers the activation of antioxidant response elements (AREs), and promotes the expression of multiple cytoprotective proteins, including glutathione, catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase, and heme-1 oxygenase. It also activates the transcription factor FoxO1, reduces the damage of -OH to mitochondria, and inhibits the overproduction of ROS. Additionally, hydrogen inhibits the infiltration of phagocytes to sites of inflammation, thereby preventing the subsequent release of reactive substances, and down-regulates various pro-inflammatory and inflammatory cytokines such as interleukin (IL)-1β, IL-6, TNF-α, and intracellular adhesion molecules (ICAM)-1, thus achieving an anti-inflammatory effect. Moreover, hydrogen also weakens abnormal expression of miRNA associated with brain injury.

Cellular Energy Production: 

Following a concussion, there is often an energy imbalance caused by a decrease in glucose uptake by neurological tissue. Glucose is critical in the production of a cellular energy molecule called ATP. If a brain cell cannot access glucose, it cannot make ATP, leading to cell death and neurological dysfunction. Molecular hydrogen may mitigate this by increasing glucose uptake and providing a supplemental fuel source for mitochondria to produce ATP in the brain.

One of the unique properties of molecular hydrogen is its ability to penetrate cell membranes and reach the mitochondria, which are the cell's powerhouses. Mitochondrial dysfunction is a common feature of TBI. It can contribute to developing symptoms such as fatigue and cognitive impairment. By reaching the mitochondria, molecular hydrogen can help to restore their function and promote healing. Several studies have shown that molecular hydrogen can improve energy metabolism in the brain. For example, a study published in the journal Medical Gas Research found that rats treated with molecular hydrogen had higher brain ATP levels than untreated rats.

Neuroprotection:

Molecular hydrogen has also been shown to have a neuroprotective effect. In animal studies, molecular hydrogen has been shown to protect against neuronal damage and cell death.

Apoptosis is programmed cell death that occurs in response to injury or stress. Excessive apoptosis can lead to cell death and tissue damage. H2 has been shown to inhibit apoptosis in the brain by regulating the expression of pro- and anti-apoptotic proteins such as BCL-2 and caspase-3. In animal models of traumatic brain injury, H2 has been shown to reduce apoptosis in the brain and improve neurological function.

Hydrogen exhibits cytoprotective properties that improve cell apoptosis. Apoptosis plays a crucial role in the progression of concussion-related brain injury. By significantly inhibiting the ectopic expression of the death promoter Bcl-2 related X protein (bax) and the expression of caspase-3, while promoting the expression of the anti-apoptotic protein Bcl-2, hydrogen can effectively provide cytoprotection.

Hydrogen also enhances blood perfusion and reduces vascular damage caused by concussion. Vascular injury and endothelial dysfunction are key factors in the development of traumatic brain injury. Excitotoxic brain activity and metabolic failure leads to the excessive production of reactive oxygen species (ROS) and the depletion of vascular protectant nitric oxide (NO) within a few minutes, resulting in the nitrosylation of protein tyrosine residues and lipid peroxidation. This ultimately weakens the vasomotor response, causing vascular stenosis. Furthermore, after concussion, NADPH oxidases (NOXs), especially NOX2 and NOX4, which are abundantly expressed in vascular endothelial cells, are up-regulated, leading to excessive production of ROS, changes in calcium homeostasis, calcium metabolism disorders, and triggering antifibrinolysis-coagulation cascade action, ultimately leading to blood clotting and vascular occlusion. Hydrogen helps to alleviate these effects.

The available evidence suggests that hydrogen exerts a protective effect on damaged blood vessels and improves blood perfusion. It achieves this by various mechanisms such as inhibiting the degradation of cyclic guanosine monophosphate (cGMP) through phosphodiesterase, thereby increasing cGMP levels and promoting protein kinase activation. Additionally, hydrogen increases intracellular calcium levels and stimulates vascular endothelial growth factors to enhance nitric oxide production. Moreover, hydrogen opens the potassium channel sensitive to ATP and activates downstream mitogen-activated protein kinase pathways, which promote angiogenesis. Experimental studies also demonstrate that hydrogen prevents arterial intimal hyperplasia and atherosclerosis by inhibiting ROS and TNF-α/NF-κB pathways, as well as foam cell apoptosis derived from macrophages. It stabilizes atherosclerotic plaques, reduces vascular stenosis, and promotes the formation of vascular collaterals using the FIk1-Notch signal stimulated by paracrine VEGFs to improve local microcirculation.

Neuroplasticity and Neurocognitive Function:

While halting brain cell death is paramount in concussion, promoting survivability and growth of healthy cells may be equally important in full recovery. H2 has been shown to enhance the production of brain-derived neurotrophic factor (BDNF). This protein promotes the growth and survival of neurons. BDNF is essential for neuroplasticity, development, and the maintenance of the nervous system. Its dysfunction has been implicated in neurological disorders, including traumatic brain injury. By enhancing BDNF production, H2 may promote the growth and survival of brain cells and potentially improve recovery after a concussion.

This protein, BDNF, promotes the growth and survival of neurons. BDNF is essential for neuroplasticity, development, and the maintenance of the nervous system. Its dysfunction has been implicated in neurological disorders, including traumatic brain injury.

Concussions can cause various cognitive impairments, including but not limited to memory loss, attention deficits, and executive dysfunction. H2 may benefit concussions by improving cognitive function through its anti-inflammatory and neuroprotective effects. A 2019 study published in the journal Frontiers in Neuroscience found that mice treated with molecular hydrogen after a traumatic brain injury had improved cognitive function and reduced levels of inflammation compared to untreated mice. Another study in the journal Neuroscience Letters in 2012 aimed to investigate the potential therapeutic effects of H2 on cognitive function in a rat model of blast-induced traumatic brain injury.

The researchers exposed adult male rats to a single blast wave generated by a shock tube. The rats were then randomly divided into control and H2 treatment groups. The H2 treatment group received H2 gas at a concentration of 2% for one hour per day for seven consecutive days, while the control group received room air.

The researchers assessed the cognitive function of the rats using the Morris water maze test, a widely used test of spatial learning and memory. The results showed that the rats in the H2 treatment group performed better on the Morris water maze test than those in the control group. The H2-treated rats showed shorter escape latencies and swam shorter distances to reach the hidden platform, indicating improved spatial learning and memory.

The Morris Water Maze test involves placing the rats in a pool of water and measuring the time it takes them to find a hidden platform. The rats are trained on the task over several days, and their performance is evaluated based on the time they take to find the platform and the distance they swim.

In addition to the Morris water maze test, the researchers also evaluated the rats' brains' oxidative stress and inflammation levels. They found that H2 treatment reduced oxidative stress markers and pro-inflammatory cytokines in the brain, suggesting that H2 may have anti-inflammatory and antioxidant effects that could protect the brain from damage.

Health and Wellness Promotion: 

For the same reasons that H2 might benefit a patient that has sustained a concussion, molecular hydrogen may also help healthy individuals. Research has shown that H2 may also:

  1. Aid in skin health: H2 has also been studied for its potential benefits on skin health. One study found that drinking hydrogen-rich water for 8 weeks significantly improved skin hydration and elasticity and reduced wrinkle depth.
  2. Improve exercise performance: H2 may also help improve exercise performance by reducing fatigue and improving recovery time. One study found that athletes who drank hydrogen-rich water for two weeks experienced significant improvements in exercise-induced muscle fatigue (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3395574/)
  3. Decrease Delayed Onset Muscle Soreness: Evidence suggests that molecular hydrogen (H2) may help decrease delayed onset muscle soreness (DOMS), the pain and stiffness that can occur in muscles after exercise (https://pubmed.ncbi.nlm.nih.gov/33555824/)
  4. Alcohol Hangovers: It is important to note that excessive consumption of alcohol is detrimental to the brain. The best way to prevent a hangover is to drink alcohol in moderation and to stay hydrated by drinking plenty of water. However, scientific evidence supports using molecular hydrogen (H2) to decrease hangover symptoms (https://academic.oup.com/ajcn/article/116/5/1208/6702415).
  5. Digestion: Some evidence suggests that molecular hydrogen (H2) may benefit digestion and gut health, including promoting bowel regularity (constipation) and reducing bowel irritation in IBS. One study published in the World Journal of Gastroenterology found that drinking hydrogen-rich water for four weeks improved symptoms of IBS, including abdominal pain and bloating.
  6. Cholesterol and Body Fat: Several studies over the past decade have investigated the potential effects of molecular hydrogen (H2) to improve cholesterol and body fat. The first such study is a randomized, double-blind, placebo-controlled trial published in the Journal of Lipid Research a long time ago, back in 2010.

With all these benefits, you may wonder how hydrogen is administered. Molecular hydrogen (H2) can be administered in several ways, depending on the individual's intended use and preferences. Here are some common ways to administer H2:

  1. Hydrogen-rich water: This is water infused with molecular hydrogen gas. It can be made using a hydrogen water generator or purchased pre-made. Drinking hydrogen-rich water is a simple and convenient way to consume H2.
  2. Hydrogen gas inhalation: Inhaling hydrogen gas is used in some clinical studies. It requires specialized equipment and should only be done under medical supervision.
  3. Hydrogen gas baths: Some spas and wellness centers offer hydrogen gas baths, which involve soaking in a tub of water infused with molecular hydrogen gas.
  4. Hydrogen gas injections: In some clinical studies, hydrogen gas has been injected into the body. This method should only be done under medical supervision.
  5. Hydrogen-rich saline: This saline solution has been infused with molecular hydrogen gas. It is administered intravenously (IV) in some clinical settings.

We discuss the pros and cons of each method of administration in a future article.

In summary, molecular hydrogen is a simple yet effective way to aid recovery from concussion and promote optimal health and quality of life.

Dr. Antonucci utilizes molecular hydrogen at his home (daily) for health maintenance. He also offers access to this contemporary intervention to his patients.

Do you have a concussion or other neurological challenge? Don’t be a stranger! Give us a call. There’s no charge and no obligation. We love to help people. Let’s see if we can help you feel your best!

Updated 3.27.23: Per request, I added more in-depth explanations for clinicians - MMA

Science is beginning to see the magnitude of head injuries in society. New reports estimate that one in every 10 people will have a concussion yearly, with some sustaining multiple. Other studies report that more than 50% of students report having concussion symptoms by their freshman year in high school. Although not the first professional that comes to mind when thinking of a concussion, chiropractors may have an essential role in the prevention and management, as well as in educating the public.

This 1-hour workshop will discuss 5 important concepts that chiropractors need to know about concussion, in order to properly treat and advise their patients.

There is a lot of misinformation about concussions, their recovery, and their long-term effects. As someone who has participated in thousands of patients' concussion recoveries over the last decade, I can tell you that people can recover from concussions. However, sometimes the road to recovery is quick and easy; other times it can be long and difficult. In this blog post, I will share my perspective, created from research and experience, on what the journey of recovering from a concussion may look like.

Disclaimer: This post is for educational purposes only. Nothing in this post is intended to be medical advice. As with every medical issue, you should always consult with a medical professional licensed in your area.

What is a concussion?

In an earlier post titled, "A Simple Guide to a Not-So-Simple Concussion," we covered a lot of ground, introducing and defining what a concussion is, what happens to the brain during a concussion, some of the symptoms associated, what to do after a concussion, the types of treatment offered for concussion-rehabilitation, and more.

We also emphasized the importance of seeking medical attention as soon as possible to get the correct treatment for concussions depending on their severity. An accurate diagnosis and treatment plan are essential for recovering after a concussion.

What is the recovery process from a concussion?

In this post, we will focus on the recovery process from a concussion. Concussion recovery can be a daunting process. Concussions are a complex, multi-system injury that requires a vast understanding of human physiology. It is important to work with a trained, experienced, and certified doctor in treating concussions. Immediately after sustaining a concussion, it's important to be evaluated to make sure no life-threatening injuries exist.

What Should I Do Right After Getting a Concussion?

One of the most challenging parts of a concussion is the variability in its presentation. Sometimes a concussion will have immediate symptoms. Other times concussion symptoms may not present themselves for 3 days. The MOST important thing everyone should do is err on the side of caution if a concussion is suspected. That's where the saying, "when in doubt, sit it out," comes from. While the first concussion has not healed, a second concussion might be fatal.

After a doctor has ruled out all life-threatening injuries, the next most important step to recovery is to rest. The research poorly defines "rest, " and many doctors have differing opinions. We know that bed rest (especially too much of it) is not beneficial. We also know that resuming daily activities too soon can be disastrous. Essentially, what we are looking for is the perfect amount of rest. Unfortunately, that doesn't exist. My general advice for “rest” is to do more than laying in bed all day, but less than your normal activity, with a primary goal of avoiding flaring up concussion symptoms, reducing (physical, mental, and emotional) stress, and just giving your brain time to settle and restore normal physiology. 

A recommended schedule for the 24 hours after the head injury for an average person with a concussion:

It is completely normal to have common symptoms such as headache, head pressure, neck pain, dizziness, nausea, fogginess, fatigue, blurred vision, and sound/light sensitivity. If you have these concussion symptoms, let your doctor know so they can prescribe something to help alleviate them. It is not normal to vomit multiple times, to have a worsening headache, black eyes, and bruising behind your ears. Those are indications that you should head to the Emergency Room.

During these 48 hours, you should avoid anything that might thin your blood/promote bleeding, such as ibuprofen, Aspirin, Pepto-Bismol, and some supplements, unless your doctor advises it is safe. Your doctor will often tell you to take Tylenol (Acetaminophen/Paracetamol) for pain. If your doctor is trained in nutrition and neurochemistry, they may prescribe dietary supplementation or hormones that can help restore cellular function, modulate inflammation, improve fuel delivery and blood flow, and also help hasten your recovery.

What Should I Do After The Resting Period?

On your third day after sustaining a concussion, you should have an appointment to be evaluated by a concussion specialist. These specialists can be medical doctors, chiropractors, physical therapists, or athletic trainers that have completed extensive training and are board certified to manage concussions. However, most general practitioners (“GPs”), chiropractors, physical therapists, and other professionals without board certifications are not typically comfortable or adequately trained to manage concussions.

From this point, every concussion journey is different. No two concussions are ever the same, even in the same person.  Nearly all recommendations should be based on their examination findings and the patient's presentation. 

Research suggests that as early as 48 hours is the best time to begin "physical activity," defined as light walking without exertion and/or prescribed, supervised, graded, light aerobic exercise. This type of exercise can be implemented and aid in recovery by helping blood flow, decreasing inflammation, increasing chemicals that help your brain heal, and improving your emotional state. This exercise must be done under the supervision of a trained specialist to prevent further injury.

Depending on your situation, the specialist may also be able to prescribe a course of brain rehabilitation exercises to help your brain regain its healthy function. These exercises are critical to decreasing recovery time. After a concussion, your brain function begins to remodel. Certain areas/networks of your brain (that are injured) are not as efficient, so your brain uses other areas/networks to perform daily tasks. In the short term, this is beneficial, but if left uncorrected can lead to long-term inefficiencies and persisting concussion symptoms.

Taking your time in the recovery journey to talk to your concussion rehabilitation expert before starting any exercise program during this delicate period is important. Remember that taking it slowly and resting are key components of recovering from a concussion successfully.

How long does a concussion take to heal?

Understanding how long a concussion takes to heal is an important part of managing this condition for children, adults, and athletes alike. Unfortunately, the answer is not straightforward, as different people can take varying lengths to recover from a concussion. Athletes recover from their injury most quickly, usually in 10-14 days. In non-sport-related concussions, adults are typically symptom-free in 3 weeks. Children and teenagers sustaining both sport and non-sport concussions often recover the slowest. Their concussion symptoms may last up to 30 days. Anyone with symptoms past 30 days is considered to have a protracted recovery and absolutely needs treatment. This occurs in approximately 30% of all concussions.

Researchers have been able to identify several concussion symptoms and factors that are correlated with a longer recovery time:

Do concussions heal on their own?

Healing is an interesting term. Cuts heal... as scars. Bones heal... but their break can still be seen on X-rays for life. Concussions may "heal" on their own, but the brain may be dysfunctional for life, if not treated.

Most research leading up to 2015 defined "recovery" as restoring symptoms to baseline (prior concussion). Using that definition anywhere from 33-70% of all individuals with concussions will have symptoms 3 months after injury (PMID: 27784191). Approximately 10% of all individuals with concussions will have permanent (defined as greater than 3 years duration) symptoms.

Other studies suggest that "while symptoms may abate, only 27% of the concussions fully spontaneously recover (based on fMRI); each additional symptom reduces the recovery rate by 20%"  (PMID: 27784191)

If someone has a concussion and doesn't seek care, their odds are stacked against them. They may "heal" or "recover" and may not notice any differences in their life compared to before their concussions. But they may also develop migraines or ADHD 2 years later, seemingly disconnected. Or, they may be the 1 in 10 that will always have symptoms.

Fortunately, our understanding of the brain and how it works, and breaks have grown exponentially, especially in functional neurology. Functional neurologists specialize in using techniques to improve the function of the nervous system, especially the brain. They work to identify and treat the underlying causes of various neurological symptoms and conditions.

Some of the things a functional neurologist may do include:

The goal of a functional neurologist is to help improve the overall functioning of the nervous system, leading to improved quality of life for patients, including those suffering from concussion.

A concussion is a serious brain injury that requires the attention and supervision of a trained professional. Concussion recovery is not uniform and tends to be different for each concussion. Many people with concussions will fully recover, but every brain injury needs to be evaluated appropriately. A functional neurologist trained by the Carrick Institute and certified by the American Board of Brain Injury and Rehabilitation is a great choice to manage a concussion. They have extensive training and experience in diagnosing, managing, and rehabilitating concussions.

If you or someone you know has suffered a concussion, please get in touch with us so we can help you get on the road to recovery.

From the Official Website:

"The 6th International Consensus Conference on Concussion in Sport will be held in Amsterdam, from 27 to 28 October 2022. The organizing federation for this Consensus Conference is the International Olympic Committee (IOC). The sponsoring federations are the IOC, Fédération Internationale de Football Association (FIFA), International Federation for Equestrian Sports (FEI), World Rugby (WR), International Ice Hockey Federation (IIHF), and Fédération Internationale de l’Automobile (FIA), with a separate Scientific Committee coordinating the program.

Concussions are in the spotlight more than ever. For this reason, the IOC, IIHF, FIFA, WR, FIA, and FEI have taken a lead role in organizing this Conference, together with an independent Scientific Group.

The purpose of the Conference is twofold. The first objective is to present a summary of new evidence-based summaries that span the spectrum of concussion, from definition to initial management, investigations, treatment, return to play protocols and prevention"

This course will instruct scholars on how to create, execute, and interpret a 1-hour brain health/concussion baseline assessment. Careful attention has been given to evaluating all 7 concussion phenotypes that were established up to this point in the program. This encompasses over 50 learning objectives and assessments that will be learned and mastered throughout the weekend. Scholars will be assessed for proficiency and need to pass to achieve certification status.

This course will instruct scholars on how to create, execute, and interpret a 1-hour brain health/concussion baseline assessment. Careful attention has been given to evaluating all 7 concussion phenotypes that were established up to this point in the program. This encompasses over 50 learning objectives and assessments that will be learned and mastered throughout the weekend. Scholars will be assessed for proficiency and need to pass to achieve certification status.
We Love to Chat!
Are you interested in exploring what your life might be like with a healthier, higher-performing brain and body? We are! Click below to schedule a free consultation!!
Free Patient Consultation
Copyright © 2023 NeuroSynergy Associates, PA
envelopephone

There is Hope!

Submit your information to start a conversation about getting your life back. 

You have Successfully Subscribed!

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram